Is GLUT4 translocation the answer to exercise-stimulated muscle glucose uptake? (2024)

1. Fueger PT, Li CY, Ayala JE, Shearer J, Bracy DP, Charron MJ, Rottman JN, Wasserman DH. Glucose kinetics and exercise tolerance in mice lacking the GLUT4 glucose transporter. J Physiol582: 801–812, 2007. doi: 10.1113/jphysiol.2007.132902. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Howlett KF, Andrikopoulos S, Proietto J, Hargreaves M. Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion. Physiol Rep1: e00065, 2013. doi: 10.1002/phy2.65. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Ryder JW, Kawano Y, Galuska D, Fahlman R, Wallberg-Henriksson H, Charron MJ, Zierath JR. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB J13: 2246–2256, 1999. doi: 10.1096/fasebj.13.15.2246. [PubMed] [CrossRef] [Google Scholar]

4. Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB, Wojtaszewski JF, Hirshman MF, Virkamaki A, Goodyear LJ, Kahn CR, Kahn BB. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med6: 924–928, 2000. doi: 10.1038/78693. [PubMed] [CrossRef] [Google Scholar]

5. Capaldo B, Gastaldelli A, Antoniello S, Auletta M, Pardo F, Ciociaro D, Guida R, Ferrannini E, Saccà L. Splanchnic and leg substrate exchange after ingestion of a natural mixed meal in humans. Diabetes48: 958–966, 1999. doi: 10.2337/diabetes.48.5.958. [PubMed] [CrossRef] [Google Scholar]

6. DeFronzo RA, Ferrannini E, Sato Y, Felig P, Wahren J. Synergistic interaction between exercise and insulin on peripheral glucose uptake. J Clin Invest68: 1468–1474, 1981. doi: 10.1172/JCI110399. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Donato AJ, Uberoi A, Wray DW, Nishiyama S, Lawrenson L, Richardson RS. Differential effects of aging on limb blood flow in humans. Am J Physiol Circ Physiol290: H272–H278, 2006. doi: 10.1152/ajpheart.00405.2005. [PubMed] [CrossRef] [Google Scholar]

8. Kjaer M, Kiens B, Hargreaves M, Richter EA. Influence of active muscle mass on glucose homeostasis during exercise in humans. J Appl Physiol71: 552–557, 1991. doi: 10.1152/jappl.1991.71.2.552 [PubMed] [CrossRef] [Google Scholar]

9. Kristiansen S, Gade J, Wojtaszewski JFP, Kiens B, Richter EA. Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. J Appl Physiol89: 1151–1158, 2000. doi: 10.1152/jappl.2000.89.3.1151. [PubMed] [CrossRef] [Google Scholar]

10. Roepstorff C, Halberg N, Hillig T, Saha AK, Ruderman NB, Wojtaszewski JFP, Richter EA, Kiens B. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab288: E133–E142, 2005. doi: 10.1152/ajpendo.00379.2004. [PubMed] [CrossRef] [Google Scholar]

11. Roepstorff C, Steffensen CH, Madsen M, Stallknecht B, Kanstrup I-L, Richter EA, Kiens B. Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol Endocrinol Metab282: E435–447, 2002. doi: 10.1152/ajpendo.00266.2001. [PubMed] [CrossRef] [Google Scholar]

12. Sjøberg KA, Frøsig C, Kjøbsted R, Sylow L, Kleinert M, Betik AC, Shaw CS, Kiens B, Wojtaszewski JFP, Rattigan S, Richter EA, McConell GK. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling. Diabetes66: 1501–1510, 2017. doi: 10.2337/db16-1327. [PubMed] [CrossRef] [Google Scholar]

13. Calbet JAL, Gonzalez-Alonso J, Helge JW, Søndergaard H, Munch-Andersen T, Boushel R, Saltin B. Cardiac output and leg and arm blood flow during incremental exercise to exhaustion on the cycle ergometer. J Appl Physiol103: 969–978, 2007. doi: 10.1152/japplphysiol.01281.2006. [PubMed] [CrossRef] [Google Scholar]

14. Katz A, Broberg S, Sahlin K, Wahren J. Leg glucose uptake during maximal dynamic exercise in humans. Am J Physiol Endocrinol Metab251: E65–E70, 1986. doi: 10.1152/ajpendo.1986.251.1.E65. [PubMed] [CrossRef] [Google Scholar]

15. Mortensen SP, Dawson EA, Yoshiga CC, Dalsgaard MK, Damsgaard R, Secher NH, González-Alonso J. Limitations to systemic and locomotor limb muscle oxygen delivery and uptake during maximal exercise in humans. J Physiol566: 273–285, 2005. doi: 10.1113/jphysiol.2005.086025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Katz A, Sahlin K, Broberg S. Regulation of glucose utilization in human skeletal muscle during moderate dynamic exercise. Am J Physiol Endocrinol Metab260: E411–415, 1991. doi: 10.1152/ajpendo.1991.260.3.E411. [PubMed] [CrossRef] [Google Scholar]

17. MacLean DA, Bangsbo J, Saltin B. Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol87: 1483–1490, 1999. doi: 10.1152/jappl.1999.87.4.1483. [PubMed] [CrossRef] [Google Scholar]

18. Kristiansen S, Asp S, Richter EA. Decreased muscle GLUT-4 and contraction-induced glucose transport after eccentric contractions. Am J Physiol Regul Integr Comp Physiol271: R477–R482, 1996. doi: 10.1152/ajpregu.1996.271.2.R477. [PubMed] [CrossRef] [Google Scholar]

19. Kennedy JW, Hirshman MF, Gervino EV, Ocel JV, Forse RA, Hoenig SJ, Aronson D, Goodyear LJ, Horton ES. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes48: 1192–1197, 1999. doi: 10.2337/diabetes.48.5.1192. [PubMed] [CrossRef] [Google Scholar]

20. Kristiansen S, Hargreaves M, Richter EA. Exercise-induced increase in glucose transport, GLUT-4, and VAMP-2 in plasma membrane from human muscle. Am J Physiol Endocrinol Metab270: E197–E201, 1996. doi: 10.1152/ajpendo.1996.270.1.E197. [PubMed] [CrossRef] [Google Scholar]

21. Kristiansen S, Hargreaves M, Richter EA. Progressive increase in glucose transport and GLUT-4 in human sarcolemmal vesicles during moderate exercise. Am J Physiol Endocrinol Metab272: E385–E389, 1997. doi: 10.1152/ajpendo.1997.272.3.E385. [PubMed] [CrossRef] [Google Scholar]

22. Richter EA, Jensen P, Kiens B, Kristiansen S. Sarcolemmal glucose transport and GLUT-4 translocation during exercise are diminished by endurance training. Am J Physiol Endocrinol Metab274: E89–E95, 1998. doi: 10.1152/ajpendo.1998.274.1.E89. [PubMed] [CrossRef] [Google Scholar]

23. Douen A, Ramlal T, Klip A, Young D, Cartee G, Holloszy J. Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle. Endocrinology124: 449–454, 1989. doi: 10.1210/endo-124-1-449. [PubMed] [CrossRef] [Google Scholar]

24. Douen A, Ramlal T, Rastogi S, Bilan P, Cartee G, Vranic M, Holloszy J, Klip A. Exercise induces recruitment of the “insulin-responsive glucose transporter.” J Biol Chem265: 13427–13430, 1990. [PubMed] [Google Scholar]

25. Goodyear LJ, Hirshman MF, Horton ES. Exercise-induced translocation of skeletal muscle glucose transporters. Am J Physiol Endocrinol Metab261: E795–E799, 1991. doi: 10.1152/ajpendo.1991.261.6.E795. [PubMed] [CrossRef] [Google Scholar]

26. Ploug T, Wojtaszewski J, Kristiansen S, Hespel P, Galbo H, Richter EA. Glucose transport and transporters in muscle giant vesicles: Differential effects of insulin and contractions. Am J Physiol Endocrinol Metab264: E270–E278, 1993. doi: 10.1152/ajpendo.1993.264.2.E270. [PubMed] [CrossRef] [Google Scholar]

27. Sylow L, Nielsen IL, Kleinert M, Møller LLV, Ploug T, Schjerling P, Bilan PJ, Klip A, Jensen TE, Richter EA. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. J Physiol594: 4997–5008, 2016. doi: 10.1113/JP272039]. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Lund S, Holman GD, Schmitz O, Pedersen O. Glut 4 content in the plasma membrane of rat skeletal muscle: Comparative studies of the subcellular fractionation method and the exofacial photolabelling technique using ATB-BMPA. Febs Lett330: 312–318, 1993. doi: 10.1016/0014-5793(93)80895-2. [PubMed] [CrossRef] [Google Scholar]

29. Lund S, Holman GD, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci92: 5817–5821, 1995. doi: 10.1073/pnas.92.13.5817. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Derave W, Lund S, Holman GD, Wojtaszewski J, Pedersen O, Richter EA. Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content. Am J Physiol Endocrinol Metab277: E1103–E1110, 1999. doi: 10.1152/ajpendo.1999.277.6.E1103. [PubMed] [CrossRef] [Google Scholar]

31. Sylow L, Møller LLV, Kleinert M, D’Hulst G, De Groote E, Schjerling P, Steinberg GR, Jensen TE, Richter EA. Rac1 and AMPK account for the majority of muscle glucose uptake stimulated by ex vivo contraction but not in vivo exercise. Diabetes66: 1548–1559, 2017. doi: 10.2337/db16-1138. [PubMed] [CrossRef] [Google Scholar]

32. Lauritzen HPMM, Galbo H, Toyoda T, Goodyear LJ. Kinetics of contraction-induced GLUT4 translocation in skeletal muscle fibers from living mice. Diabetes59: 2134–2144, 2010. doi: 10.2337/db10-0233. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Hansen PA, Wang W, Marshall BA, Holloszy JO, Mueckler M. Dissociation of GLUT4 translocation and insulin-stimulated glucose transport in transgenic mice overexpressing GLUT1 in skeletal muscle. J Biol Chem273: 18173–18179, 1998. doi: 10.1074/jbc.273.29.18173. [PubMed] [CrossRef] [Google Scholar]

34. Kandror KV. A long search for Glut4 activation. Sci Signal2003: PE5, 2003. doi: 10.1126/stke.2003.169.pe5]. [PubMed] [CrossRef] [Google Scholar]

35. Wang W, Hansen PA, Marshall BA, Holloszy JO, Mueckler M. Insulin unmasks a COOH-terminal GLUT4 epitope and increases glucose transport across T-tubules in skeletal muscle. J Cell Biol135: 415–430, 1996. doi: 10.1083/jcb.135.2.415. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Zaid H, Talior-Volodarsky I, Antonescu C, Liu Z, Klip A. GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity. Biochem J419: 475–484, 2009. doi: 10.1042/BJ20081319. [PubMed] [CrossRef] [Google Scholar]

37. Shamni O, Cohen G, Gruzman A, Zaid H, Klip A, Cerasi E, Sasson S. Supportive data on the regulation of GLUT4 activity by 3-O-methyl-D-glucose. Data Br14: 329–336, 2017. doi: 10.1016/j.dib.2017.07.069. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Kristiansen S, Youn J, Richter EA. Effect of vanadate on glucose transporter (GLUT4) intrinsic activity in skeletal muscle plasma membrane giant vesicles. Biochim Biophys Acta1282: 71–75, 1996. doi: 10.1016/0005-2736(96)00041-7. [PubMed] [CrossRef] [Google Scholar]

39. Asp S, Daugaard JR, Kristiansen S, Kiens B, Richter EA. Eccentric exercise decreases maximal insulin action in humans: Muscle and systemic effects. J Physiol494: 891–898,1996. doi: 10.1113/jphysiol.1996.sp021541. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Baron A, Brechtel G, Wallace P, Edelman S. Rates and tissue sites of non-insulin-and insulin-mediated glucose uptake in humans. Am J Physiol Endocrinol Metab255: E769–E774, 1988. doi: 10.1152/ajpendo.1988.255.6.E769. [PubMed] [CrossRef] [Google Scholar]

41. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes30: 1000–1007, 1981. doi: 10.2337/diab.30.12.1000. [PubMed] [CrossRef] [Google Scholar]

42. Wojtaszewski JFP, Hansen BF, Kiens B, Richter EA. Insulin signaling in human skeletal muscle: Time course and effect of exercise. Diabetes46: 1775–1781, 1997. doi: 10.2337/diabetes.46.11.1775. [PubMed] [CrossRef] [Google Scholar]

43. Richter EA, Mikines KJ, Galbo H, Kiens B. Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol66: 876–885, 1989. doi: 10.1152/jappl.1989.66.2.876. [PubMed] [CrossRef] [Google Scholar]

44. McConell GK, Sjøberg KA, Ceutz F, Gliemann L, Nyberg M, Hellsten Y, Frøsig C, Kiens B, Wojtaszewski JFP, Richter EA. Insulin‐induced membrane permeability to glucose in human muscles at rest and following exercise. J Physiol598: 303–315, 2020. doi: 10.1113/JP278600. [PubMed] [CrossRef] [Google Scholar]

45. González-Alonso J, Calbet JAL, Nielsen B. Metabolic and thermodynamic responses to dehydration-induced reductions in muscle blood flow in exercising humans. J Physiol520: 577–589, 1999. doi: 10.1111/j.1469-7793.1999.00577.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. González-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol86: 1032–1039, 1999. doi: 10.1152/jappl.1999.86.3.1032. [PubMed] [CrossRef] [Google Scholar]

47. Mortensen SP, Askew CD, Walker M, Nyberg M, Hellsten Y. The hyperaemic response to passive leg movement is dependent on nitric oxide: a new tool to evaluate endothelial nitric oxide function. J Physiol590: 4391–4400, 2012. doi: 10.1113/jphysiol.2012.235952. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Jensen TE, Sylow L, Rose AJ, Madsen AB, Angin Y, Maarbjerg SJ, Richter EA. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release. Mol Metab3: 742–753, 2014. doi: 10.1016/j.molmet.2014.07.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Sylow L, Møller LLV, Kleinert M, Richter EA, Jensen TE. Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1. J Physiol593: 645–656, 2015. doi: 10.1113/jphysiol.2014.284281. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Klip A, McGraw TE, James DE. Thirty sweet years of GLUT4. J Biol Chem294: 11369–11381, 2019. doi: 10.1074/jbc.REV119.008351. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: How is it regulated?. Physiology20: 260–270, 2005. doi: 10.1074/jbc.REV119.008351. [PubMed] [CrossRef] [Google Scholar]

Is GLUT4 translocation the answer to exercise-stimulated muscle glucose uptake? (2024)
Top Articles
Latest Posts
Article information

Author: Dong Thiel

Last Updated:

Views: 5658

Rating: 4.9 / 5 (79 voted)

Reviews: 94% of readers found this page helpful

Author information

Name: Dong Thiel

Birthday: 2001-07-14

Address: 2865 Kasha Unions, West Corrinne, AK 05708-1071

Phone: +3512198379449

Job: Design Planner

Hobby: Graffiti, Foreign language learning, Gambling, Metalworking, Rowing, Sculling, Sewing

Introduction: My name is Dong Thiel, I am a brainy, happy, tasty, lively, splendid, talented, cooperative person who loves writing and wants to share my knowledge and understanding with you.